
SAND REPORT
SAND 2005-2454
Unlimited Release
Printed June 2005

APItest User Guide
v1.0

William C. McLendon III, Sandia
Ron A. Oldfield, Sandia

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

ITED

STATES OF AM

ER
IC

A

SAND 2005-2454
Unlimited Release
Printed June 2005

APItest User Guide
v1.0

William C. McLendon III and Ron A. Oldfield
Dept. 9223

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110�
wcmclen,raoldfi � @sandia.gov

Abstract

APItest is a portable testing framework developed at Sandia National Laboratories
to address some of the development challenges inherent in distributed systems soft-
ware for massively parallel processing (MPP) machines. In particular, the scale of
todays MPPs (tens of thousands of processors) make it difficult for the developer to
isolate and/or reproduce errors because it is difficult to determine the exact state of the
system during a crash. For smaller systems, the analyst typically finds errors by in-
vestigating log files, but this process becomes time-prohibitive as the number of client
processors number in the thousands. APItest provides the capability to isolate and
test individual components before they are deployed into a large distributed system–
allowing the component developer to investigate an individual components response
to expected inputs without worrying about the correctness of external components or
the system as a whole.

Sandia National Laboratories developed the APItest software as part of the test-
ing integration effort of the SciDAC Scalable Systems Software (SSS) project. This
document is a user guide for the APItest software.

3

Acknowledgment

Thanks to Narayan Desai, Scott Jackson, and Thomas Naughton for providing excellent
feedback and requests that have significantly impacted the development directions of this
tool.

The format of this report is based on information found in [1].

4

Contents
Nomenclature . 7
1 Introduction . 9
2 Feature List . 12
3 Installation . 13

3.1 Prerequisites . 13
3.2 Installing from Source . 14
3.3 Installing from a Binary RPM . 14
3.4 Rebuilding a Source RPM . 15

4 Running APItest . 16
5 Test Scripts . 16

5.1 Test Status Codes . 18
5.2 “cmd” Tests . 18
5.3 “script” Tests . 20
5.4 “sss” Tests . 21

6 Batch Scripts . 23
6.1 The � test � element . 24
6.2 The � dep � element . 24
6.3 The � parameter � element . 26

7 Viewing Results . 27
8 Conclusion . 28
References . 30

Appendix

A Command Line Options . 31
B Example Scripts . 33

B.1 Example “cmd” Test Scripts . 33
B.2 Example“script” Test Scripts . 34
B.3 Example “sss” Test Scripts . 35
B.4 Example Batch Scripts . 36

C Encoding Special Characters into XML Text Blocks . 37
D How To Create New Test Types . 39

D.1 The do newType() Function . 40
D.2 The do cleanup newType() Function . 40
D.3 The do kill newType() Function . 41

E Output File Formats . 43
E.1 Naming Conventions . 43
E.2 Output File for Tests . 44

5

E.3 Output File for Batches . 46
F Selected Screenshots . 49
G Troubleshooting . 57
H List of Installed Files . 59

Figures
1 System components that comprise the SSS software. The components com-

municate through a standard, well-defined, network interface. 10
2 Listing: Generic test file outline . 16
3 Listing: CMD test file outline . 19
4 Listing: SCRIPT test file outline . 21
5 Listing: SSS test file outline . 21
6 Listing: Batch file outline . 23
7 Listing: BATCH1.apb . 24
8 Listing: BATCH2.apb . 25
9 Listing: BATCH3.apb . 26
F.1 Screenshot : command line . 49
F.2 Screenshot : Main . 50
F.3 Screenshot : Test Executing . 51
F.4 Screenshot : Batch Result . 52
F.5 Screenshot : Test Result . 53
F.6 Screenshot : Dependency Failure . 54
F.7 Screenshot : XML Error Detection . 55

Tables
1 Standard � test � Attributes . 17
2 Test Status Codes . 18
3 Standard � command � Attributes . 19
4 � input � and � output � Attribute Values for cmd and script tests 20
A.1 Command line options for APItest. 31
E.2 testResult Element Attributes . 44

6

Nomenclature

.apt Three letter file name extension for test files.

.apb Three letter file name extension for batch files.

API Application Programming Interface. In the context of APItest, API refers to the way
in which a component interacts with the operating system and/or other components.

CDATA Character DATA is a feature of XML and HTML type documents. It is a text-string
that exists between the start and close of an element. (i.e., � element � CDATA � /element �).

DOM Document Object Model is a form of representation of structured documents (such as
XML) as an object-oriented model. DOM is the official World Wide Web Consortium
(W3C) standard for representing structured documents in a platform- and language-
neutral manner. See http://en.wikipedia.org/wiki/Document_Object_Model
for additional information.

attribute A feature of an XML document. An attribute is contained within an element, usually
containing some meta-data to that element. (i.e., � element attribute="" �

digraph Directed graph.

element A feature of an XML document. An element in XML creates a new node of informa-
tion. (i.e., � element �). These are sometimes referred to as tags.

DAG Directed Acyclic Graph.

GUI Graphical User Interface (pronounced “gooey”).

SSS Scalable System Software (A SciDAC project, details can be found at the following
URL: http://www.scidac.org/ScalableSystems/.

XML eXtensibile Markup Language is a simple, very flexible text format derived from
SGML (ISO 8879). Originally designed to meet the challenges of large-scale elec-
tronic publishing, XML is also playing an increasingly important role in the exchange
of a wide variety of data on the Web and elsewhere. � http://www.w3c.org/XML/ � .
Also see [2].

7

8

APItest User Guide
v1.0

1 Introduction

Software testing and debugging has long been a challenge for parallel and distributed sys-
tems. Because of the lack of effective and portable tools, testing, even on small systems,
is a tedious and time-consuming task, often requiring as much as two-thirds of the overall
cost of software production [3]. On todays MPPs (tens of thousands of processors), testing
and debugging is exacerbated by the fact that it is difficult to determine the exact state of
the system during a crash, making it nearly impossible to isolate and/or reproduce errors.
For small and mid-size systems, the analyst typically finds errors by investigating log files,
but this process becomes time-prohibitive as the number of client processors number in
the thousands. In this paper, we provide a brief description of systems software and de-
scribe a software package called “APItest” designed to help the developer overcome some
of the challenges inherent in developing distributed systems software for massively parallel
processing (MPP) machines.

Systems software for MPP systems consists of a variety of tools that perform services
to manage the use of system resources by applications. These tools may include services
to manage and launch jobs, track account usage, provide security and reliability, and so
forth. Since each system and computing environment is different, the required tools and
policies for usage may be entirely different for each system. To satisfy these requirements,
existing systems software consists of (often proprietary) tools highly tuned to match the
specific requirements of its particular system, creating a suite of tools that is not portable
and has little value outside of their particular environment. To address this problem, the
SciDAC Scalable Systems Software (SSS) project [4] was formed to leverage the systems-
software development experience of the DOE laboratories [5, 6] to build an open-source,
Linux-based, systems-software suite for large-scale commodity clusters.

In general, there are two types of architectures for systems software on MPP systems:

1. Configurable Architecture–the systems-software consists of a small set of tools that
each contain a variety of functionality that the administrator configures to meet the
needs of the system.

2. Component Architecture–the systems-software consists of a large set of tools that
each provide specialized functionality. The administrator composes the system by

9

Meta
Scheduler

Meta
Monitor

Meta
Manager

Grid Interfaces

Meta Services

Process
Manager

Checkpoint/
Restart

Authentication
communication

Node State
Manager

Node
Configuration

& Build
Manager

Hardware
Infrastructure

Manager

Job Queue
Manager

Allocation
Management

Usage
Reports

Scheduler
System &

Job MonitorAccounting

Service
Directory

Event
Manager

Resource Mgmt WG

Process Mgmt WG

Build & Config WG

Legend

Figure 1. System components that comprise the SSS software.
The components communicate through a standard, well-defined,
network interface.

selecting tools appropriate for the system.

The members of the SSS project chose a component architecture (illustrated in Figure 1)
for several reasons. In contrast to tools in a configurable architecture, a component has
a small code base, making it less susceptible to error, more predictable with respect to
performance, and easier to develop. For example, when designing a configurable tool,
the developer has to anticipate the needs all current and future applications; however, the
developer of a “lightweight” component only implements functionality needed by a single
target system.

As leader of “Testing and Integration” working group of the SSS project, Sandia is
responsible for finding or developing tools to validate the correctness of individual com-
ponents in the SSS suite. While there are several existing tools for testing and validating
systems software [7, 8, 9, 10, 11, 12, 13], none of these tools provide all of the features de-
sired by the SSS group that specifically address the testing challenges of large-scale MPP
systems. In particular, the SSS group wanted a portable testing tool that allowed devel-

10

opers to test the interface of the components in isolation, they wanted to define complex
dependency relationships between successful tests, and they wanted a nice graphical user
interface for interactive testing and a command-line interface for off-line testing. APItest
implements each of these features. APItest provides isolation by using “black-box” testing
that evaluates the response of an isolated component to various inputs. Isolation testing
allows the developer or system administrator to evaluate the correctness of a component
without worrying about the correctness of external components or the system as a whole.
This feature enables the rapid development of multiple implementations of the same com-
ponent as well as concurrent development of other system services because the developer
does not have to rely on other working components to verify correctness or compliance
with the standard network interface.

APItest also allows the user to provide arbitrary definitions of success, as opposed to
the simple string matching provided by most testing software, and it can pass conditional
tests based on statistical results. For example, the user can declare a test a successful if
40% of “sub-tests” succeed.

APItest is written entirely in Python, making it portable across many different operating
systems. The user can run APItest from the command line or through a web-based graphical
user interface. Although we developed APItest to evaluate systems software, APItest offers
a flexible and extensible test driver framework for the validation and testing of a wide range
of applications.

This document is a user guide for the APItest software. Section 2 provides a complete
lits of the features of APItest, Section 3 lists the prerequisites and describes how to install
the software, Section 4 describes how to run APItest either from the command line or
from a web-browser GUI, Section 5 describes how to develop test scripts for evaluating
components, Section 6 describes how to batch tests together, and Section 7 describes how
to view results. We also describe command-line options and provide a variety of examples
in the appendix.

11

2 Feature List

Some of the features in APItest are:

� High portability

– Written in Python for high portability.
– Text only mode, perfect for running scheduled jobs.
– Graphical mode via web browser for interactive use.
– Safe mode for browser.
– Open Source (LGPL)� Scripts

– Tests are scripted in XML.
– Two types of scripts:

� Test scripts.� Batch scripts.
– Environment variables
– SUID capability
– Timeouts
– Nested batch files� Several built in test types.

– Run embedded scripts.
– Run commands via command-line.
– Scalable System Software tests network API.� Test Validation

– Validate specific outputs – only check what matters.
– Pattern matching support.� Rich dependency system.

– Tests within batches can be ordered.
– Conditional execution based on dependencies.
– Overall batch file status determination.� Script error detection and reporting.� Test execution orders can be specified.� Easy to add new test types to APItest.� Execution results archival on disk.

12

3 Installation

This section provides instructions on how to install APItest. There are packages that need
to be installed on a system in order for APItest to work. The following subsections describe
what prerequisites are needed and the installation procedure.

3.1 Prerequisites

APItest requires three packages to be installed before starting APItest. The following table
provides a quick summary of the requirements for APItest and web URLs from which they
can be obtained.

1. Python � 2.2 Python runtime environment
http://www.python.org

2. ZopeInterfaces � 3.0 ZopeInterfaces (for Twisted)
http://www.zope.org/Products/ZopeInterfaces

3. Twisted � 2.0 Twisted application framework
4. TwistedWeb � 0.5 Twisted Web framework

http://www.twistedmatrix.com
5. ElementTree � 1.1 ElementTree module for Python

http://effbot.org/downloads/#elementtree

Python is the programming language that APItest is developed in. Since Python is an
interpreted language kind of like Perl, it must be installed or APItest cannot run.

ZopeInterfaces is a prerequisite to the Twisted Framework. It must be installed prior to
installation of Twisted and TwistedWeb.

Twisted is a framework, written in Python, for writing networked applications. It in-
cludes implementations of many useful network services such as a web server, etc. Twist-
edWeb is part of the Twisted framework but has recently been partitioned from the main
distribution into its own package.

ElementTree is a Python library which parses XML into a DOM tree. It provides a
much cleaner and easier to use interface than the default XML parser that comes packaged
with Python. We make use of this for loading and processing test scripts and in saving
results.

13

3.2 Installing from Source

The following steps outline the procedure for installing APItest after the prerequisite pack-
ages (Sec. 3.1) have been installed.

1. Make sure all prerequisites have been installed.

2. Extract the tar.gz archive.
$ tar -xzf apitest-1.0.tar.gz

3. CD into the directory created during extraction.
$ cd apitest-1.0

4. Build and install into the default directory (/usr/local/apitest).
$ make install

5. Build and install APItest into a user-specified directory.
$ make install PREFIX=installation path

The installation script installs the libapitest module into the site-packages direc-
tory of your current python installation. This module is used by APItest to perform its
functions. The APItest executables are installed into /usr/local/apitest by default, but
this can be overridden by providing the PREFIX parameter to the make command as shown
in step 5.

3.3 Installing from a Binary RPM

Installing APItest from a binary RPM on an x86 computer can be accomplished using the
following steps on a PC running Linux after the required prerequisites have been installed.

1. $ rpm -Uvh apitest-1.0.i386.rpm

See Appendix H for a complete listing of the files this will install. The listing may also
be obtained by issuing the rpm command: $ rpm -qpl apitest-1.0.i386.rpm.

14

3.4 Rebuilding a Source RPM

The following steps will guide you thorough building and installing from a source rpm.

1. Create a binary RPM.
$ rpmbuild --rebuild apitest-1.0.src.rpm

2. Copy the binary RPM to your home directory.
$ cp /usr/src/redhat/RPMS/i386/apitest-1.0.i386.rpm /.

3. Install APItest from the binary rpm.
$ rpm -Uvh apitest-1.0.i386.rpm

15

4 Running APItest

APItest can be run either via the command line only or it can be run with a web-browser
based GUI. The former mode allows APItest to be run as a batch or system scheduled task,
while the latter allows a more interactive mode of execution. A full listing of allowable
command line options is available in Appendix A, table A. Some example sets of command
line options are:

Help - $ apitest –help
Test-Only - $ apitest � options � -f input file
Graphical - $ apitest � options � httpd � httpd options �
Graphical Help - $ apitest httpd –help
View-Only - $ apitest httpd –viewonly

5 Test Scripts

Tests are written in XML text files. We refer to these files as scripts. Currently there are
two types of scripts that APItest recognizes, test and batch scripts. A test script instructs
APItest to execute a command or task. The basic XML structure of a test file is shown in
Figure 2.

� testDef �
� info � CDATA � /info �
� test type=“type name” attributes �

� input name=“input name” � CDATA � /input �
...

� output name=“output name” format=“format” � CDATA � /output �
...

� /test �
� /testDef �

Figure 2. Listing: Generic test file outline

16

The top-level root element is � testDef � . It serves as the root level element for the
XML document. This element contains two other elements, an � info � element and a
� test � element.

The � info � element is common to ALL APItest input files. There are no attributes
associated with this element. The purpose of this element is for the test developer to write
notes or comments in. Otherwise, this element is not used by APItest for any actual testing.
For that, we use the � test � element.

The � test � element contains everything that APItest needs to know in order to execute
a test. Table 1 shows the attributes associated with this element. The most critical attribute
for this element is the type attribute. It tells APItest which handler to use to run this test.
Without it, the test will break and cause unpredictable behavior in APItest. Currently,
APItest comes with three predefined test types: cmd, script, and sss. We say a test is a
“cmd test” if the type attribute of � test � equals “cmd”.

Other parameters, such as working directory, timeout, or matching expectation can be
controlled via the optional attributes. These are also listed in table 1. There are also some
sub-elements that can be contained within � test � .

APItest will look for � input � and � output � within a � test � element. There can
many or none of these, as needed by a specific test. Their names suggest their function
in that an � input � element provides inputs to the test and � output � elements specify the
expected outputs of this test. Since � input � and � output � attribute values are somewhat
dependent on what kind of test they’re being used in, we will describe them in more detail
in later sections.

� test � Element Attributes
Optional Attribute default Description cmd script sss

No type Type of test to run. (REQUIRED) Y Y Y
Yes timeout -1 Timeout in seconds (-1 = infinite). Y Y Y
Yes match YES PASS if actual output matches

expected? (YES/NO) Y Y Y

Table 1. Standard 	 test
 Attributes

17

5.1 Test Status Codes

A status code is the final exit status of a test. For instance, if a test matched all of its
expected outputs then we might say that the test PASSED. Table 2 provides a listing of
status codes and a brief description of each.

Test Status Codes
PASS The test passed
FAIL The test failed
FAILDEP The test did not execute because of one or more failed dependencies.
TIMEOUT The test ran too long and was killed by APItest

Table 2. Test Status Codes

5.2 “cmd” Tests

A cmd test is a test that executes some command via a direct command-line call. To specify
a test as a “cmd” test, the type attribute in � test � should be “cmd”, or rather:

� test type="cmd" �
These tests are designed to run some other preexisting binary or executable script on the
system. These tests require one additional XML element to be specified inside � test � ,
called � command � .

The � command � element is used to specify what the actual command we are execut-
ing is. For instance:

� command � ls � /command �
will instruct APItest to execute the UNIX directory listing command “ls”. Building on
the basic test file structure, we can now see the general structure of a “cmd” test in figure 3.

There are several attributes we can specify for the � command � attribute that affect how
and where the test is run. We can provide a particular working directory or run a command
under a different user id. We can also specify which shell to run the command from such
as bash or csh. Table 3 provides a listing of the attributes along with brief descriptions.

18

� testDef �
� info � CDATA � /info �
� test type=“cmd” attributes �

� command options � exec � /command �
� input name=“input name” � CDATA � /input �

...
� output name=“output name” format=“format” � CDATA � /output �

...
� /test �

� /testDef �

Figure 3. Listing: CMD test file outline

� command � Element Attributes
Optional Attribute default Description cmd script sss

Yes interpreter /bin/sh Interpreter for test. Y Y
Yes uname current User name to execute the command

Requires root permission. Y Y N
Yes wdir /tmp/ Working directory. Y Y

Table 3. Standard 	 command
 Attributes

After the � command � element, we can optionally add some � input � and � output �
elements. Table 4 shows the possible attributes for these elements for cmd and script tests.
Input elements can provide command-line arguments and stdin buffers to the commands
being execute. It is allowed to specify multiple arguments.

APItest will recognize only stdout, stderr, or status in output elements for cmd and script
tests. These values are the only ones that will make sense for a script or command since they
typically write to standard output, standard error, and set an exit status upon completion.
We also allow two different types of expected output buffers: regular expressions (regexp)
and string literals (literal).

If a regular expression is provided, APItest will determine if the actual output matches
the expected regular expression. If the expected output is a string literal, APItest will do a
direct string comparison.

19

If the test developer wishes to ignore some particular output stream, such as the standard
error buffer, they can omit a � output name=“stderr” � element and APItest will ignore
standard error. A good rule of thumb here is that APItest will only check what it’s told to,
everything else is ignored.

� input � Attribute Values
name=“argument” Specifies an argument to the command.
name=“stdin” Specifies a string to send into the stdin buffer

� output � Attribute Values
name=“stdout” Specifies this is the expected stdout buffer.
name=“stderr” Specifies this is the expected stderr buffer.
name=“status” Specifies this is the expected exit status.
format=“literal” Expected output is a literal string.
format=“regexp” Expected output is a regular expression.

Table 4. 	 input
 and 	 output
 Attribute Values for cmd and
script tests

5.3 “script” Tests

Script tests are similar to command tests. They execute a task on your system as speci-
fied by a script written in-line with the APItest test file. Figure 4 shows the outline for a
script test. These are nearly identical to cmd tests, the only differences being that the test
type attribute is set to “script” and the script body is placed in the CDATA buffer of the
� command � element.

There are no additional attributes for the � test � element in a script test. See Table 1
for a listing of attributes for the � test � element in script tests.

Script tests also share the same attributes for the � command � element. Table 3 shows
the relevant attributes. When running a script test, APItest will create and execute the script
in the working directory provided by the test.

Finally, script tests share the same � input � and � output � format and attributes as
cmd tests. This is reasonable considering the similar inputs and outputs a cmd or script will
receive/produce.

20

� testDef �
� info � CDATA � /info �
� test type=“script” attributes �

� command options �
script body
� /command �
� input name=“input name” � CDATA � /input �

...
� output name=“output name” format=“format” � CDATA � /output �

...
� /test �

� /testDef �

Figure 4. Listing: SCRIPT test file outline

5.4 “sss” Tests

The third test type provided by APItest is the “sss” test. A sss test is designed to work with
the ssslib communication package, which is part of the Scalable Systems project (http:
//www.scidac.org/ScalableSystems). These tests are used to test out APIs of system
software components for this project.

� testDef �
� info � CDATA � /info �
� test type=“sss” destination=“service name” attributes �

� input name=“sendbuf” � CDATA � /input �
� output name=“recvbuf” format=“format” � CDATA � /output �

� /test �
� /testDef �

Figure 5. Listing: SSS test file outline

A sss test represents a single transaction with a SciDAC SSS aware application. A
transaction consists of transmitting some buffer to a service via the sss.ssslib module. One
caveat, we will need the Service Directory (SD) to be running on the system for the test

21

to work correctly. Also, we generally expect a transaction to consist of a message to a sss
component and a response back.

Figure 5 shows the outline of a sss test. The basic outline is the same, but there are
some differences. The � test � element requires a special attribute, destination, which
specifies the destination service for the message. The communication library will lookup
the destination in the service directory and transmit the message buffer to the correct com-
ponent.

There is also a change in the � input � and the � output � elements. We only need one
of each for a sss test. The � input � element specifies the send-buffer for a transaction. It
requires the name attribute to be set to “sendbuf”. The CDATA is sent to the destination
during the test via the ssslib communication library. The � output � element requires its
name attribute to be assigned “recvbuf” to specify this as a receive buffer. If � output �
is omitted APItest will do the send, but not wait for the receive. We do not recommend
extensive use of this feature.

Please see Appendix B.3 for example SSS test scripts. Additional scripts are located in
the samples/scidac sss/ directory.

22

6 Batch Scripts

A batch script is a script that does not run tests directly, but rather provides a listing of other
tests that are to be run. Batch scripts can contain lists of tests, lists of other batches, or a mix
of both. Batch scripts also allow dependencies to be set between tests to enforce execution
order. These dependencies can also be set to allow a test to be executed conditionally
depending on whether or not other tests passed or failed.

Batch files can PASS or FAIL in a similar manner to test files. By default, all tests in a
batch file must pass in order for the batch file itself to PASS. A test can be removed from
consideration by setting the mustPass attribute in a � test � elements, or by changing the
default setting of mustPass in a � parameter � element.

� testBatch �
� info � CDATA � /info �
� parameter key=“mustPass” value= � “true” �“false” / �
� test name=“filename” mustPass= � “true” �“false” / �

...
� dep parent=“filename” child=“filename” attributes/ �

...
� /testBatch �

Figure 6. Listing: Batch file outline

This is the structure of a batch test. 	 test
 elements do not have to precede 	 dep
 elements.
They can be placed in any order in the file.

The basic structure of a batch script is shown in Figure 6. The root element of a batch
test is the � testBatch � element. It can contain an � info � element, a � parameter � , and
any combination of � test � and � dep � elements.

23

6.1 The � test � element

� test � elements specify a test to be included in this batch file. The format of a � test �
element is the following:

� test name="filename" [mustPass="True" �"False"] / �

The name attribute is a test or batch filename that should be loaded and run by this
batch. mustPass is an optional attribute that is used to tell APItest if this test is required to
PASS for the batch file to PASS or not. mustPass is true by default, but can be changed by
use of the � parameter � element.

	 testBatch

	 info
 Some information about this file 	 /info

	 test name="A.apt"/

	 test name="B.apt"/

	 test name="C.apt"/

	 test name="D.apt"/

	 /testBatch

Figure 7. Listing: BATCH1.apb

This listing shows a batch script that will launch tests A - D (note the .apt
extension indicates these are tests). In this example, the tests will be run in no
particular order.

6.2 The � dep � element

We add dependencies by using the � dep � element. Tests listed in a dep element do not
have to be listed previously by a � test � element. The format of a � dep � element is:

� dep parent="t1" child="t2" � status="expected status" � / �

Adding a dependency between two tests instructs APItest to run the parent (t1) before
the child (t2). The status attribute is an optional attribute. It may contain PASS, FAIL,
ANY, or MUSTRUN with PASS being the default value.

24

Setting status to PASS means that the parent must run and PASS or the child test will
not be executed.

Setting status to FAIL means that the parent must run and FAIL or the child test will
not be executed.

Setting status to ANY means that the child will not be run until after the parent is run.
The child test will run regardless of the status of the parent.

Setting status to MUSTRUN means that the parent must run and either PASS or FAIL
or the child test will not be executed.

If a test fails its dependency, it will not execute. APItest will assign the status FAILDEP
to that test to indicate that it wasn’t run because it did not meet all its dependencies.

Figure 8 extends our previous example shown in Figure 7 by adding dependencies.

	 testBatch

	 dep parent="A.apt" child="B.apt"/

	 dep parent="A.apt" child="C.apt"/

	 dep parent="C.apt" child="D.apt"/

	 dep parent="C.apt" child="E.apt"/

	 dep parent="D.apt" child="F.apt"/

	 /testBatch

(A)

A.apt

C.aptB.apt

D.apt E.apt

F.apt

(B)

Figure 8. Listing: BATCH2.apb

(A) is a batch containing the tests listed in fig 7, with an ordering now specified. In (B) we see a
graphical illustration of the tests showing the dependency hierarchy.

Figure 9 further extends our example by adding a status condition to the edge between
A.apt and B.apt. In this case, test B.apt will execute if A.apt FAILED when it was run.

25

	 testBatch

	 dep parent="A.apt" child="B.apt" status="FAIL"/

 dep parent="A.apt" child="C.apt"/

	 dep parent="C.apt" child="D.apt"/

	 dep parent="C.apt" child="E.apt"/

	 dep parent="D.apt" child="F.apt"/

	 /testBatch

Figure 9. Listing: BATCH3.apb

A third batch listing, illustrating setting an edge dependency. In this case, we add a restriction that
B.apt will only run if test A.apt had a status of FAIL.

6.3 The � parameter � element

The � parameter � element is optional and has two attributes, key and value. Setting
� parameter key=“mustPass” value=“false” � will change the mustPass default setting to
be false for all tests in this batch file. The value of mustPass is true by default.

Figure 7 shows an example batch script file which will run several tests. This file shows
only � test � elements which may execute in any particular order. In practice they will
usually execute in the order of appearance, but without explicit dependencies set we will
not guarantee the ordering.

26

7 Viewing Results

There are three primary methods that users can view test results generated by APItest. The
first method is to use the graphical mode of APItest to view results of a test that was run
during the same session of APItest. The list of runs can be found by clicking on the Browse
Session Results button.

These results will no longer be viewable once APItest is shut off. A user might still
want to view these results graphically, so we have provided an offline browser as a part of
APItest. To use this feature, simply start APItest with graphical mode enabled ($ apitest
httpd) and click the Saved tab in the menu bar.

There is also a “view only” mode available for APItest which allows browsing the saved
results but does not allow execution of any tests via the browser. This mode is enabled by
adding --viewonly to the command line.

Finally, the results are saved on disk in text files in XML format. The raw output can
be viewed in any text viewer a user wishes to use. These files are saved according to a
particular naming convention. More information can be found on the naming of these files
in Appendix E.1. There are some screen shots showing the result browser in Appendix F

27

8 Conclusion

APItest is a new open-source framework for driving application tests. It provides a portable
and easy to use test framework due to its development in Python and use of XML scripting
for test writing.

The initial design of APItest was to provide a capability to test the API of networked
components such as those in cluster system software in order to validate their APIs. APItest
allows interfaces to be tested for SciDAC Scalable System Software components using the
ssslib package.

We also added the capability to APItest to run scripts as well as execute programs via
a command line type shell. This gives users the capability to test virtually anything using
APItest.

Finally, due to the object-oriented design of APItest, entirely new test types can be
defined without having to significantly modify the APItest code. Appendix E.2 provides
more detailed instructions for creating new test types. This allows APItest a large degree
of customization for specific test environments while allowing tests to still be run natively
under APItest.

28

References

[1] T. K. Locke, “Guide to preparing SAND reports,” Sandia National Laboratories, Al-
buquerque, New Mexico 87185 and Livermore, California 94550, Technical report
SAND98-0730, May 1998.

[2] “XML definition,” Internet. [Online]. Available: http://en.wikipedia.org/wiki/XML

[3] R. Pressman, Software Engineering, A Practitioner’s Approach. McGraw-Hill, 1987.

[4] A. Geist, “Executive summary of the Scalable Systems Software (SSS) project,” Inter-
net. [Online]. Available: http://www.scidac.org/ScalableSystems/Systems-2-pager.
pdf

[5] D. S. Greenberg, R. Brightwell, L. A. Fisk, A. B. Maccabe, and R. Riesen, “A
system software architecture for high-end computing,” in Proceedings of SC97: High
Performance Networking and Computing. San Jose, California: ACM Press, Nov.
1997, pp. 1–15. [Online]. Available: http://doi.acm.org/10.1145/509593.509646

[6] R. Evard, N. Desai, J.-P. Navarro, and D. Nurmi, “Clusters as large-scale development
facilities,” in CLUSTER ’02: Proceedings of the IEEE International Conference on
Cluster Computing. Washington, DC, USA: IEEE Computer Society, 2002, p. 54.

[7] S. Ghosh and A. Mathur, “Issues in testing distributed component-based systems,”
1999. [Online]. Available: citeseer.ist.psu.edu/ghosh99issues.html

[8] M. Harrold, D. Liang, and S. Sinha, “An approach to analyzing and
testing component-based systems,” 1999. [Online]. Available: citeseer.ist.psu.edu/
harrold99approach.html

[9] S. E. Virginia, “A framework for practical, automated black-box testing of
component-based software.” [Online]. Available: citeseer.ist.psu.edu/449872.html

[10] S. Krishnamurthy and A. Mathur, “the estimation of reliability of a software system
using reliabilities of its components,” 1997. [Online]. Available: citeseer.ist.psu.edu/
krishnamurthy97estimation.html

[11] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, “A
distributed resource management architecture that supports advance reservations and
co-allocation,” in Proceedings of the International Workshop on Quality of Service,
1999. [Online]. Available: citeseer.ist.psu.edu/foster99distributed.html

29

[12] S. H. Edwards, “Black-box testing using flowgraphs: an experimental assessment of
effectiveness and automation potential,” Software Testing, Verification & Reliability,
vol. 10, no. 4, pp. 249–262, 2000. [Online]. Available: citeseer.ist.psu.edu/448240.
html

[13] A. D. Brucker and B. Wolff, “Testing distributed component based systems using
UML/OCL,” in Informatik 2001, ser. Tagungsband der GI/ÖCG Jahrestagung,
vol. 1, no. 157, Nov. 2001, pp. 608–614. [Online]. Available: citeseer.ist.psu.edu/
brucker01testing.html

[14] M. Wolf and C. Wicksteed, “Date and time formats,” September 1997. [Online].
Available: http://www.w3.org/TR/NOTE-datetime

30

A Command Line Options

General Command Line Options
Short Long Default Description

-d –debug Run APItest in debug mode.
-o –oroot ./output Output directory.
-v –verbose Verbose output.
-t –timeout -1 Timeout (seconds) to shut down APItest. (-1 = no timeout)
-T –transient Do not save output and results to disk.
-D –sqldb Disabled Toggle data saving to a MySQL Database.
-P –sqlpw “” MySQL Database PW.

–sqlreset Resets MySQL tables IF -D and -P are correct
–version Print out twisted version information and exit.

Options For Text-Only Mode
Short Long Default Description

-f –file Input file (can be a .apt or a .apb file).

Options For Graphical Mode (httpd)
Short Long Default Description

-i –iroot ./ Sets input directory for test files.
-h –host localhost HTTP host URL. (i.e., http://host/)
-p –port 2112 HTTP port number. (i.e., http://host:port/)
-w –viewonly View only mode. Only views saved results.

Doesn’t allow executing any tests via the browser.
-C –nocss Compatibility mode. Disables CSS stylesheet menus.

Replaces the tabbed menu with a list-style menu.
This might help with some browsers.

Table A.1. Command line options for APItest.

31

32

B Example Scripts

B.1 Example “cmd” Test Scripts

The following is an example cmd script that runs the UNIX command “ls -ltr” in /tmp/. The
output elements specify that APItest will check the stdout buffer via the regular expression
“.*”, which matches any output. This test will also validate that the command returns
nothing to stderr and exits with a status of 0.

Example #1
	 testDef

	 test type="cmd" wdir="/tmp"

	 command interpreter="/bin/csh" wdir="/tmp"
 ls 	 /command

	 /test

	 /testDef

Example #2
	 testDef

	 info
 This test will list out a directory listing. 	 /info

	 shortDescription
 Directory Listing 	 /shortDescription

	 test type="cmd"

	 command interpreter="/bin/csh" wdir="/tmp"
 ls 	 /command

	 input name="argument"
 -l 	 /input

	 output name="stdout" format="regexp"
 .* 	 /output

	 output name="stderr" format="literal" /

	 output name="status"
 0 	 /output

	 /test

	 /testDef

Example #3
	 testDef

	 info
 This test shows use of environment variables. 	 /info

	 shortDescription
 Envvar Test 	 /shortDescription

	 test type="cmd"

	 command interpreter="/bin/csh"
 env 	 /command

	 input name="envvar" key="TEST ENVVAR 1"
 foo 	 /input

	 output name="stdout" format="regexp"
 .*(TEST ENVVAR 1=foo).* 	 /output

	 /test

	 /testDef

33

B.2 Example“script” Test Scripts

In this case, the script prints the characters ‘a’,‘b’, and ‘c’ each on a separate line. The
interpreter attribute in the command element specifies which interpreter this script is run
as, and the script will be executed from the wdir directory. We also left out an output
element specifying stderr, which tells APItest to completely ignore any output to stdout.

Example #1
	 testDef

	 info
 Runs a simple script. 	 /info

	 shortDescription
 Script Test 	 /shortDescription

	 test type="script"

	 command interpreter="/bin/csh" wdir="/tmp/"

foreach i (’a’ ’b’ ’c’)

echo "$i"
end

	 /command

	 output name="stdout" format="regexp"
 a � nb � nc � n 	 /output

	 output name="status"
 0 	 /output

	 /test

	 /testDef

Example # 2
	 testDef

	 info
 Script that prints out a time stamp. 	 /info

	 shortDescription
 Script Time stamp 	 /shortDescription

	 test type="script"

	 command interpreter="/bin/csh" wdir="/tmp/"

foreach i (1 2 3 4 5 6 7 8 9 10)

set theDate = ‘date‘
echo "timestamp: $ � i � : $theDate"
sleep 1

end
	 /command

	 output name="stdout" format="regexp"
������ timestamp ������� 10 ��	 /output

	 /test

	 /testDef

34

B.3 Example “sss” Test Scripts

An example SSSlib test which transmits a buffer to the service directory and expects any
kind of output in return.

	 testDef

	 test type="sss" destination="service-directory"

	 shortDescription
 SSS Test 	 /shortDescription

	 input name="sendbuf"
 <get-location>≶location
component=’service-directory’ host=’*’ port=’*’ protocol=’*’
schema version=’*’ tier=’*’/></get-location> 	 /input

	 output name="recvbuf" format="regexp"
 .* 	 /output

	 /test

	 /testDef

35

B.4 Example Batch Scripts

Here we have some examples of some batch scripts:

Example #1
	 testBatch

	 info
 Sample batch script with no dependencies 	 info

	 shortDescription
 Batch #1 	 /shortDescription

	 test name="samples/cmd/cmd test 1.apt"/

	 test name="samples/cmd/cmd test 2.apt"/

	 test name="samples/cmd/cmd test 3.apt" mustPass="false"/

	 /testBatch

Example #2
	 testBatch

	 info
 Sample batch script with dependencies 	 info

	 parameter key="mustPass" value="False"/

	 test name="samples/cmd/cmd test 1.apt" mustPass="True"/

	 dep parent="samples/cmd/cmd test 1.apt"

child="samples/cmd/cmd test 2.apt"/

	 dep parent="samples/cmd/cmd test 1.apt"

child="samples/cmd/cmd test 3.apt" status="PASS"/

	 dep parent="samples/cmd/cmd test 3.apt"

child="samples/cmd/cmd test 2.apt" status="ANY"/

	 /testBatch

Example #3
	 testBatch

	 dep parent="samples/cmd/cmd test 1.apt"
child="samples/cmd/cmd test 2.apt"/

	 dep parent="samples/cmd/cmd test 1.apt"
child="samples/cmd/cmd test 3.apt" status="PASS"/

	 test name="samples/cmd/cmd.apb"/

	 dep parent="samples/cmd/cmd test 3.apt"

child="samples/cmd/cmd test 2.apt" status="ANY"/

	 dep parent="samples/cmd/cmd notfound 1.apt"

child="samples/cmd/cmd test 4.apt" status="FAIL"/

	 /testBatch

36

C Encoding Special Characters into XML Text Blocks

One problem encountered in writing tests, especially for SciDAC SSS components (which
transmit XML encoded messages from one component to another) is how exactly we can
encode an XML message into the CDATA portion of another XML script without confusing
the parser. For example, if we want to put the text “ � send data � test buffer � /send data � ”
into a � buffer � element, we might try the following:

� buffer ��� send data � test buffer � /send data ��� /buffer �
Unfortunately, this will confuse an XML parser because it will interpret the “ � ” char-

acter in � send data � as the start of a new element. The way to get around this is to use
a “<” in place of “ � ” in the CDATA buffer. Our example will work if we make it look
like this:

� buffer � <send data � test buffer</send data ��� /buffer �
This change will allow the XML message to be encoded within an APItest script file.

We can also use “>” to replace “ � ” and “&” to replace “&” characters too.

37

38

D How To Create New Test Types

Developing a general test framework is no easy task because every application is different
and every development environment is also unique. Our solution to this problem is to
develop APItest in an object-oriented manner and provide an interface from a test handler
into the framework itself that is easy for a developer to use.

We provide several test handlers with APItest already (cmd, script, and sss test types).
Extending these is not difficult for basic tests. The basic procedure is as follows:

1. Obtain the source distribution (the .tar.gz file) and extract it.

2. Edit the testHandler.py file in the libapitest/ directory. For a new test type,
newType, add the following function definitions to the testHandler class.

� do newType
� cleanup newType
� kill newType

3. Install your modified version:
$ python setup.py install --install-data=PREFIX

Once this is finished, we would like to run our new test type. This is done via the
� test � element in a .apt file. One might look like: � test type="newType" � .

The following sections will explain what each of the three functions are and what
APItest expects from each.

39

D.1 The do newType() Function

This function is the workhorse of a test. It is responsible for executing the test and returning
the results back to the APItest calling framework. Since APItest is built on the Twisted
framework, we don’t use a stack-based call system, rather we use callbacks for tests. This
allows the web-browser and other handlers to perform their functions while a test is still
running.

The callback is executed via inserting this command before exiting:

reactor.callLater(0.0, self.procReturned, rval)

This tells the Twisted reactor to call the function self.procReturned(rval) 0.0 seconds after
the currently running function exits. rval is a Python dictionary object storing key:value
pairs. Each key corresponds to the an � output name=“key” � element, and the value stores
the actual result. APItest takes rval and compares the key:value pairs with the expected
results for a test to determine if the test passes or fails. This is the minimal requirement for
a test to return to the framework, though, we haven’t actually done anything yet.

For a test to do something, it needs to gain some information about what the test script
is telling it to do. The testHandler class has a variable defined, called self.xmlTestRoot,
which contains the DOM tree of the test. Specifically, it is an ElementTree.Element object
pointing to the � test � element of the DOM tree. This can be navigated to extract the
appropriate instructions using the interfaces provided by ElementTree. We advise a test
developer to consult the ElementTree documentation for detailed instructions on the use of
that library.

It should be noted that if a new test type is expected to be long-running it is useful
to write the test handler in such a way that it is non-blocking, preferably in a stack-less
manner using callbacks. Otherwise, the APItest browser will appear to “hang” while it is
waiting for the function to exit. Examples of how to do this are shown in the do script()
and do cmd() handlers.

D.2 The do cleanup newType() Function

The cleanup function is called as a final step during test handling. Its purpose is to provide
capability to perform post-processing after a test has completed. This might include closing
down a process, or deleting or archiving of temporary files. The APItest calling framework
does not require anything special from this function, it works as a regular stack-based call.

40

D.3 The do kill newType() Function

The third and final function which APItest expects to find in testHandler is the kill function.
This function’s purpose is to shutdown the test process and exit immediately. When a
timeout threshold is reached for a given test, APItest will make a call to that tests kill
function. No special output is required for this function, it is invoked using a regular stack-
based call.

41

42

E Output File Formats

E.1 Naming Conventions

The default mode of APItest is to save a copy of the output from a test run to disk. This
output is typically saved in XML output files under a directory saved in the oroot directory.
The format of the output directories encodes the date and time of the run.

A test run executed on September 27th, 2004 at 1:01:00 PM would be placed in a di-
rectory such as: output/run.2004-09-27.13-01-00Z/. Individual test results are are
named according to the following formula:

[b,t]nn.test file.out

The first character is either a “b” or a “t”, corresponding to whether or not the result file is
for a batch or a test file. The next chars are numbers, indicating the order in which the test
or batch ran. Following the dot, we have the test file name followed by .out. An example
batch output file might be named:

b12.bTest 1.out

A test output file might be named something like:

t32.testfile.out

Saving test output can be disabled by issuing the -T or --transient options on the
command-line.

43

E.2 Output File for Tests

Test output format outline

� testResult �
� dep/ �

...
� output �

� actual �
� expect �

� /output �
...

� /testResult �

E.2.1 testResult element

The testResult element is the root level element for an APItest test result. This element
contains the following attributes:

testResult Element Attributes
filename Filename of the test script for which this is a result.
md5sum MD5 hash signature of the test file.
pBatchID ID number of the batch file that called this test.
runID ID number of the run in which this test was executed.
status Final status of this test (PASS, FAIL)
testID ID number of this test.
timeStart Start time (iso8601 [14]).
timeStop Stop time (iso8601 [14]).
timeoutFlag Did this test timeout? “YES” or “NO”.
timeoutTime Time limit for this test (seconds).
uid User ID under which this test is run.
uname User Name under which this test is run.

Table E.2. testResult Element Attributes

44

E.2.2 dep element

One or more of these can be contained within the testResult element. This element
contains the status of a tests’ dependencies.

� actual - Actual status of the parent test.

� expect - Expected status of the parent test.

� parent - Parent test file.

E.2.3 output element

The output element contains the following attributes:

� format - Format of the expected output? Valid values are literal or regexp.

� matched - Did the actual and expected output match? (“YES” or “NO”).

� name - The name of this ‘output’ buffer? (i.e., stdout or stderr.)

An output element contains sub elements � actual � CDATA � /actual � and
� expect � CDATA � /expect � , where the CDATA buffers are the actual and expected buffers
specified for the test.

45

E.3 Output File for Batches

Test output format outline

� batchResult �
� summary/ �
� child/ �

...
� /batchResult �

E.3.1 batchResult element

The batchResult element is the root-level element for a batch file result.

� filename - Filename of the batch script for which this is a result.

� md5sum - MD5 hash signature of the test file.

� pBatchID - ID number of the batch file that called this batch (if any).

� runID - ID number of the run this batch occurred in.

� status - UNUSED

� timeStart - Start time of this batch script.

E.3.2 summary element

A batch result contains one summary element. This gives a quick summary of the contents
of the file. Specifically, it gives the tally of how many tests were in this batch, how many
failed, and how many passed. The attributes for the summary element are:

� nFail - Number of tests that failed.

� nPass - Number of tests that passed.

� nTotal - Total number of tests executed by this batch script.

46

E.3.3 child element

For each test contained within this batch, there is a child element. This element contains
data about each test that was run, its status code, and ID number. The element � child �
contains these attributes:

� file - The filename of the test file run.

� status - Status code of this test (i.e., PASS, FAIL, FAILDEP, etc).

� testID - The TestID of this test. This can be used to reveal the order that the tests
were run.

47

48

F Selected Screenshots

This section shows some selected screenshots of APItest in action to give a feel for what
the graphical interface might look like on a user’s system.

Figure F.1. Screenshot : command line

This an example terminal output from running APItest in its command-line only mode. This mode
would be useful for running APItest as a scheduled run such as running a regression suite during

the night.

49

Figure F.2. Screenshot : Main

This is the main page of APItest that is shown when initially connecting to APItest. In this image
we see that one test script was not properly formatted in XML; it is highlighted and marked that it

did not parse correctly.

50

Figure F.3. Screenshot : Test Executing

During a test run tests which have run are displayed with their status. The test or batch that is
currently running is indicated by RUNNING shown in the Status column.

51

Figure F.4. Screenshot : Batch Result

Results of the list of tests run during a session. This figure shows a completed run that contained a
test that timed out and some batches. The listing is ordered by directory and sorted. Batch files

show their status as well as the cumulative total number of tests they executed.

52

Figure F.5. Screenshot : Test Result

Detailed test results for a test can be displayed. Vital statistics on the test are displayed as well as
expected and actual outputs.

53

Figure F.6. Screenshot : Dependency Failure

Detailed results on a test that failed to meet a dependency criteria. In this case, script test 2
cannot run unless script test 1 and cmd test 2 pass. Unfortunately, when cmd test 2 fails the

dependency is not met. This screenshot shows how APItest highlights the failed dependency.

54

Figure F.7. Screenshot : XML Error Detection

Example showing an XML input file that contained an error. APItest prints out the text of the file
and marks the location that the parser encountered the error.

55

56

G Troubleshooting

� Menus don’t display correctly in my browser.

This is because the menu is done using stylesheets, and some browsers might have
problems with it. I have tested APItest in Safari, Firefox, Mozilla, and on MSIE
under Windows XP.

APItest can be run in a compatibility mode to turn off the CSS menus. Running with
the following command line may work:

$apitest httpd --nocss

� I have a script test that won’t parse. APItest complains about my use of & and
� symbols.
If your script has a & symbol in it, it will confuse the parser because the & charac-
ter is a special character for XML. This can be easily resolved by replacing every
occurrence of & with &

The � symbol will confuse the parser because it is also a special token. When the
parser finds a � , it believes it is the start of a new XML element. We can resolve this
by replacing the � symbol with <.

� I made APItest run a script that puts itself into the background (i.e., daemonizes
itself), and APItest seems to hang. It doesn’t make any further progress on its
tests.

This happens because of the nature of some of the internals of APItest. It does not
currently support running multiple tests in parallel. Each test must finish before the
next test will run.

Even though the script is daemonized, it still is keeping pipes open to stdout and
stderr for output. The script handler sees this and realizes the script is still running.

APItest can be tricked into thinking that the script has completed by having the script
close its pipes to stdout and stderr. This should allow APItest to continue on with
subsequent tests. Don’t forget to have the daemon terminated after the tests are fin-
ished.

57

58

H List of Installed Files

Installing the RPM distribution installs the following files. The site-packages directory may
be different if APItest is installed via python setup.py install, depending upon your
environment.

Site Packages
/usr/lib/python2.3/site-packages
/usr/lib/python2.3/site-packages/libapitest
/usr/lib/python2.3/site-packages/libapitest/ init .py
/usr/lib/python2.3/site-packages/libapitest/digraph.py
/usr/lib/python2.3/site-packages/libapitest/digraph.pyc
/usr/lib/python2.3/site-packages/libapitest/htmltools.py
/usr/lib/python2.3/site-packages/libapitest/htmltools.pyc
/usr/lib/python2.3/site-packages/libapitest/httpHandler css.py
/usr/lib/python2.3/site-packages/libapitest/httpHandler css.pyc
/usr/lib/python2.3/site-packages/libapitest/imageHandler.py
/usr/lib/python2.3/site-packages/libapitest/imageHandler.pyc
/usr/lib/python2.3/site-packages/libapitest/jobManager.py
/usr/lib/python2.3/site-packages/libapitest/jobManager.pyc
/usr/lib/python2.3/site-packages/libapitest/libapitest.py
/usr/lib/python2.3/site-packages/libapitest/libapitest.pyc
/usr/lib/python2.3/site-packages/libapitest/libdebug.py
/usr/lib/python2.3/site-packages/libapitest/libdebug.pyc
/usr/lib/python2.3/site-packages/libapitest/stylesheets.py
/usr/lib/python2.3/site-packages/libapitest/stylesheets.pyc
/usr/lib/python2.3/site-packages/libapitest/systools.py
/usr/lib/python2.3/site-packages/libapitest/systools.pyc
/usr/lib/python2.3/site-packages/libapitest/testHandler.py
/usr/lib/python2.3/site-packages/libapitest/testHandler.pyc
/usr/lib/python2.3/site-packages/libapitest/twistedTools.py
/usr/lib/python2.3/site-packages/libapitest/twistedTools.pyc

APItest Executable
/usr/local/apitest/apitest

Samples
/usr/local/apitest/samples/apitest test.apb
/usr/local/apitest/samples/batch

59

/usr/local/apitest/samples/batch/bTest 1.apb
/usr/local/apitest/samples/batch/bTest 2.apb
/usr/local/apitest/samples/batch/bTest 3.apb
/usr/local/apitest/samples/batch/bTest 4.apb
/usr/local/apitest/samples/batch/bTest 5.apb
/usr/local/apitest/samples/batch/bTest 6.apb
/usr/local/apitest/samples/batch/bTest 7.apb
/usr/local/apitest/samples/batch/bTest 8.apb
/usr/local/apitest/samples/batch/bTest conditional.apb
/usr/local/apitest/samples/batch/bTest conditional FAIL.apb
/usr/local/apitest/samples/batch/bTest conditional PASS.apb
/usr/local/apitest/samples/batch/bTest faildep.apb
/usr/local/apitest/samples/batch/bTest seq.apb
/usr/local/apitest/samples/batch/bTest subTestCheck.apb
/usr/local/apitest/samples/batch/batch.apb
/usr/local/apitest/samples/cmd
/usr/local/apitest/samples/cmd/cmd.apb
/usr/local/apitest/samples/cmd/cmd filediff.apt
/usr/local/apitest/samples/cmd/cmd nomatch.apt
/usr/local/apitest/samples/cmd/cmd notfound 1.apt
/usr/local/apitest/samples/cmd/cmd notfound 2.apt
/usr/local/apitest/samples/cmd/cmd test 1.apt
/usr/local/apitest/samples/cmd/cmd test 2.apt
/usr/local/apitest/samples/cmd/cmd test 3.apt
/usr/local/apitest/samples/cmd/cmd test 4.apt
/usr/local/apitest/samples/daemon
/usr/local/apitest/samples/daemon/daemonize.apt
/usr/local/apitest/samples/envvar
/usr/local/apitest/samples/envvar/envvar.apb
/usr/local/apitest/samples/envvar/envvar cmd.apt
/usr/local/apitest/samples/envvar/envvar cmd suid.apt
/usr/local/apitest/samples/envvar/envvar script.apt
/usr/local/apitest/samples/envvar/envvar script suid.apt
/usr/local/apitest/samples/install test.apt
/usr/local/apitest/samples/io
/usr/local/apitest/samples/io/io.apb
/usr/local/apitest/samples/io/io large matchall.apt
/usr/local/apitest/samples/io/io large miss stderr.apt
/usr/local/apitest/samples/io/io large miss stdout.apt
/usr/local/apitest/samples/scidac sss

60

/usr/local/apitest/samples/scidac sss/sd
/usr/local/apitest/samples/scidac sss/sd/sss 01.apt
/usr/local/apitest/samples/scidac sss/sd/sss 02.apt
/usr/local/apitest/samples/scidac sss/sd/sss sd inittest.apb
/usr/local/apitest/samples/scidac sss/sd/sss sd inittest cleanup.apt
/usr/local/apitest/samples/scidac sss/sd/sss sd inittest prep.apt
/usr/local/apitest/samples/scidac sss/sd/sss sd remove emng.apt
/usr/local/apitest/samples/scidac sss/sd/sss sdstat sdoff.apt
/usr/local/apitest/samples/scidac sss/sd/sss sdstat sdon.apt
/usr/local/apitest/samples/scidac sss/sd/sss start.apt
/usr/local/apitest/samples/scidac sss/sd/sss stop.apt
/usr/local/apitest/samples/script
/usr/local/apitest/samples/script/script.apb
/usr/local/apitest/samples/script/script foo.apt
/usr/local/apitest/samples/script/script test 1.apt
/usr/local/apitest/samples/script/script test 2.apt
/usr/local/apitest/samples/script/script test badamp.apt
/usr/local/apitest/samples/script/timestamp.apt
/usr/local/apitest/samples/suid
/usr/local/apitest/samples/suid/suid cmd uid.apt
/usr/local/apitest/samples/suid/suid cmd uname.apt
/usr/local/apitest/samples/suid/suid cmd uname notfound.apt
/usr/local/apitest/samples/suid/suid cmd uname wdir 1.apt
/usr/local/apitest/samples/suid/suid cmd uname wdir 2.apt
/usr/local/apitest/samples/suid/suid script uid.apt
/usr/local/apitest/samples/suid/suid script uname.apt
/usr/local/apitest/samples/suid/suid script uname notfound.apt
/usr/local/apitest/samples/suid/suid script uname status.apt
/usr/local/apitest/samples/timeout
/usr/local/apitest/samples/timeout/timeout.apb
/usr/local/apitest/samples/timeout/timeout.apt

61

DISTRIBUTION:
1 Thomas Naughton (ORNL)

1 Al Geist (ORNL)

1 Scott Jackson (PNNL)

1 Rusty Lusk (ANL)

1 Paul Hargrove (LBL)

1 Craig Steffan (UIUC)

1 Brett Bode (AMES)

1 MS 0321
Bill Camp, 9200

1 MS 1110
Steve Plimpton, 9212

1 MS 1110
William Hart, 9215

1 MS 1110
Neil Pundit, 9223

1 MS 0817
Doug Doerfler, 9220

1 MS 0140
Robert Leland, 9220

10 MS 1110
William McLendon, 9223

1 MS 1110
Ron Oldfield, 9223

1 MS 0817
James Ang, 9224

1 MS 0823
John Zepper, 9320

1 MS 0807
John Noe, 9328

1 MS 0806
Leonard Stans, 9336

1 MS 0139
Art Hale, 9900

1 MS 9151
Jim Handrock, 8960

1 MS 9158
Mitch Sukalski, 8961

1 MS 9158
Robert Armstrong, 8961

1 MS 9018
Central Technical Files,
8940-2

2 MS 0899
Technical Library, 4916

62

